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Solution of the Ornstein-Zernike Equation for a Soft- 
Core Yukawa Fluid. II. Numerical Results 
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Numerical calculations are reported for the simplest case of the soft-core 
Yukawa fluid introduced in an earlier paper. Attention is given to the thermody- 
namic behavior, the correlation functions, and the interparticle potentials found 
by inverting the structural information using Percus-Yevick and hypernetted 
chain integration equation approximations. 
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1. INTRODUCTION 

In a recent paper  (1) [hereafter referred to as I; equations from I are referred 
to as (I.1), etc.] a model fluid was proposed in which the direct correlation 
function c(x)  was assumed to be of Yukawa form, viz. 

N Kje-Zj(X-l) 
c ( x ) = Y ,  , ~ > 1  (1) 

j = l  X 

where Kj and ~ are the Yukawa parameters and x is the interparticle 
separation scaled with respect to a range parameter  R. On the domain 
x < 1 the effect of a soft-core potential was introduced by assuming that 
the total correlation function h (x) could be represented by (sin  x) 

h (x) = - 1 + ~,, cosh X i ~kiX 1 , 0 < X < 1 (2) 
i = l  
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the parameters a~ and X i being arbitrary. Subject to the constraints (1) and 
(2) the Ornstein-Zernike (OZ) equation, (2) 

h(lrl) = c(Irl) + ofh(Ir - sl)c(Is[)ds (3) 
where p is the number density, was solved using the Weiner-Hopf or 
"finite-range transformation" first derived by Baxter (3'4) with the assump- 
tion c ( x ) =  0, x > 1. This method was subsequently adapted by other 
workers for the case of the hard-core Yukawa fluid (HCYF), (5-7) which in 
the mean spherical approximation (MSA) yields a condition for c(x)  of the 
form given in Eq. (1), when the parameters Kj are identified as varying 
inversely with absolute temperature T. 

In I, the OZ equation [Eq. (3)] was decoupled into two separate 
equations for h(x)  and c(x),  given by 

x h ( x )  = - q ' ( x )  + 12.f0~(x - t )h([x - t l )q( t )d t  (4) 

c O0 I 

x c ( x )  = - q '(x)  + 12.ix q ( t )q ( t  - x ) d t  (5) 

w h e r e .  = ~roR 3/6 is the reduced density and the function q(x)  is given by 
N 

q(x )  = qo(X) + 2 flj e-~j(~-') ,  x > 0 (6) 
j= l  

qo(x) = qsc(x) + j=12 f l j d j ( 1  - e-Z/(x- ')) ,  0 < x < 1 (7) 

[0, otherwise 

and 

_• M 
qsc = QI( x - 1) + (x 2 - 1) + ~ [ Oil(cosh)tix - coshXi) 

i=1 

+ Qi2(sinh Xix - sinh Xi)], 0 < x < 1 (8) 

The subscript "sc" indicates that part of q(x)  arising from the soft-core 
condition, Eq. (2). The parameters flj and dj are given by 

flJ = z j [ 1 -  12.~(zj)] (9) 

and 

f M zXi~ i 4 = 1 -  12.  v -  1 _ E (lO) 
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where 

and 

A i = ailcoshh i (11) 

M 

y = 1 + Z zx,V 02) 
i = l  

The quantities ~(s) and ~(s) are the Laplace transforms of q(x) and xg(x), 
respectively. The function g(x) = h(x) + 1 is the radial distribution func- 
tion. The details of this analysis are given in I. The 2M + 2 + N coeffi- 
cients Q], Q2, Qil, Qi2, dj are given in terms of the flj ( j  = 1 . . . . .  N) by 
2M + 2 linear equations obtained by substituting the form of q(x) into Eqs. 
(4) and N linear equations obtained from (9) [see Eqs. (I.23)-(I.28)]. The 
remaining N nonlinear equations for the flj may be obtained using the 
alternate expressions for ~(s) given in I [see Eqs. (I.26)-(I.35)]. 

In this paper we report numerical calculations for the simplest case of 
our model, namely, M = N = 1, which we refer to as the soft-core Yukawa 
fluid (SCYF). This case is interesting in that the results for the SCYF may 
be compared directly with those for the HCYF (6'7) using the same form of 
c(x). In this way the consequences of introducing the soft core may be 
investigated directly. In addition, the SCYF is of interest since all solution 
parameters may be calculated explicitly, as we are able to derive a quartic 
equation for the parameter fl = fl~ similar in form to that for the 
HCYF. (6'7) In Section 2 we outline the numerical procedure used to 
determine the solution parameters Qj, Q2, Q1~, Qi2, r,  and d (=  d 0, and 
also the scheme adopted for assigning the parameters a (=  al), X (=  ~1), K 
(=  K1), and z (=  zi). 

In Section 3 we discuss the nature of the gas-liquid transition; in 
Section 4 some comments are made regarding the high-density singularity 
in inverse compressibility. Section 5 is concerned with features of tile radial 
distribution function. Finally in Section 6 we examine the potentials found 
by inverting the Percus-Yevick (py)(8) and hypernetted chain (HNC) (9) 
integral equation approximations. 

2. NUMERICAL PROCEDURE FOR THE SCYF 

We begin by describing in outline the derivation of the quartic 
equation for ft. From Eqs. (I.24), (I.25), (I.27), and (1.28) we may derive 
four linear equations for Ql, Q2, Qll, QI2 in terms of fi and d (which in turn 
depend on a, ~, K, and ~, the SCYF parameters). This equation may be 
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written in the form 

where 
Ill M Q2 = L 0 + flL I + fldL 2 (13) 

Y = QI1, w = eX(Ql] + Q12)/2 (14) 

and expressions for the matrix M and column vectors L i (i = 0, 1,2) (which 
do not contain terms in/3 for/3d) are given in the Appendix. Multiplying 
Eq. (13) by M -1, we obtain expansion for the quantities Q1, Q2, Y, and w, 
viz. 

where 

I ,l IA,, 1 rA12  
s L&oJ LA4, L&2] 

(15) 

Ali] 
A2i ] = M-1L i (16) 
A3i ] A4i 

Using these expansions in Eq. (9), we find that 

( -  K + Dfl)e-~ + Eft 2 
d ~  (17) 

G/3 2 

where the parameters D, E, and G may be expressed in terms of the 
parameters Aij, 4, and X. We then note that Eqs. (9) and (10) may be written 
as 

/3z 1 
K - [ 1 -  12nq(z)] (18) 

d = l _  12r/ [ F(z) y - 1  A~2 l 
z [ 1 -  12~/~(z)] + - - 7 -  + z 2 -  X - - - - - '5  (19) 

where F(z) is given by Eq. (I.35b). Substitution of Eq. (18) into Eq. (19), 
and using Eq. (17) for the parameter d in Eqs. (15) and (19), we are able to 
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derive a quartic equation for the parameter fl whose coefficients depend 
only on the parameters A~j, D, E, and G, which are easily calculated 
numerically and depend only on a, X, K, and ~. This quartic is analogous to 
that found in the case of the HCYF. (6'7) 

Hence, given the parameters a, X, K, (, and density T/it is straightfor- 
ward to find fl (since there exist analytic formulas for the roots of quartic 
polynomials. (l~ Using Eq. (17) and (15), it is then possible to find Q1, Q2, 
Q] 1, Q12, and d. It should be pointed out at this point that, using the above 
method, we will be able to derive a quartic for the parameter fl for arbitrary 
M [cf. Eq. (2)], since the only difference in the above analysis is that the 
matrix M will be (2 + 2M) • (2 + 2M) for arbitrary M. 

We now turn our attenttion to the problem of assigning values to the 
parameters a, X, K, and (. In the MSA for the HCYF, (6'7) ~ is considered 
fixed, and K varies inversely with temperature. Since the MSA has not been 
definitely extended to soft-core fluids, ~ it is not possible to identify K as 
varying inversely with temperature; however, it is reasonable to suggest that 
increasing K corresponds in some fashion to decreasing T, the precise 
nature of this dependence being obscure. Some thought must also be given 
to the parameters a and ?L Again we find that it is not possible, within some 
established integral equation approximation such as PY, MSA, or HNC, to 
make definitive statements about the state dependence of a and ?L How- 
ever, it is clear that one condition we would impose on the choice of a, ?~, 
K, and ~ is that h(x) be continuous at x - - 1 ,  so that the correlation 
functions being studied correspond to some continuous potential. 

For the purposes of this paper we have chosen a rather ad h o c  
approach to the choice of parameters a, ~, K, and ~. We choose ~ and ~ as 
fixed, and determine a from the criterion that h(r) be continuous. From 
Eqs. (4) and (7), this is equivalent to insisting that 

q~(1) = 0 (20) 

We describe the behavior of the solution along lines of constant K, hence 
assuming a quasi-MSA approximation for c(x). The results we have ob- 
tained reflect, to some extent, the artificiality of assigning the parmeters in 
the manner described above. On the other hand, we expect that the general 
features of the phase behavior of the model fluid will be retained using a 
more complicated assignment scheme, such as that described in I (Section 
3.1). (Note that, in terms of the description given in Section 3.1 of I, we are 
investigating the use of the SCYF in the model sense 0 Clearly such a study 
is a necessary precursor to understanding the difficulties in higher-order 
problems (which allow greater state dependence in the parameters a, X, K, 
and ~ than that assumed in this paper). 
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3. THE GAS-LIQUID TRANSITION 

The SCYF transition may be described conveniently in terms of the 
parameter/3 in the same way that the gas-liquid transition was described 
for the HCYF. (6'7) In Fig. la the SCYF parameter fl is plotted against 
reduced density ~ for X = 10, ( = 2 at varying values of K. For comparison 
the/3 diagram for the HCYF is shown in Fig, lb with the same values of K 
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Fig. I .  (a) Behavior of the parameter fl as a function of density W for the S C Y F  vith l = I0, 
= 2, and K = 1.218 (- . - ) ,  K = 0.66 (- - -), and  K = 0.4 ( ). The crosses represent points  at 

which  Q(0) = 0. (b) Behavior  of  the parameter  fl as a funct ion of  density a7 for the H C Y F  with 
= 2 and K = 1.218 (- . - ) ,  K = 0.66 (- - -), and  K --- 0.4 ( ). The l ine L 1 represents the locus 

of  points  for which  the physical  "and nonphys ica l  values of  fl coincide.  The line L 2 represents 
the locus of  points  for wh ich  Q(0) = 0. 
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and ~. In general the quartic for fl has two real roots, as in the HCYF. In 
Fig. lb the line L 1 represents the locus of points at which the two real roots 
are equal. The physical solutions for fl are given by the lower branch of the 
K isotherms. The line L 2 is the locus of points at which 0(0)  = 0. Since the 
isothermal compressibility Xr is given by (where k is Boltzmann's constant) 

IskTxT= 1 / [  0 ( 0 ) ]  2 (21) 

the line L 2 corresponds to points of infinite compressibility, and hence 
specifies the spinodal curve for the liquid-gas transition. (6'7) 

For the SCYF we were unable to find the line corresponding to the 
locus L 1. Numerically, Eq. (20) corresponds to a single nonlinear equation 
for the parameter a, since all other parameters are calculated explicitly for 
a given value of a. We were unable to find values of a satisfying Eq. (20) 
such that the two roots of the quartic were equal. However, this is not a 
crucial defect since before this numerical breakdown, on any given K 
"isotherm" 0(0)  becomes zero at accessible densities and thus we are able 
to specify a spinodal curve analogous to the locus L 2 in Fig. lb. The SCYF 
gas-liquid transition densities are marked with crosses in Fig. la. As 
expected, the interpenetration of particles allowed by the inclusion of a soft 
core has the effect of widening the domain of densities lying in the 
gas-liquid coexistence region for a given isotherm. In addition, the K = 
0.66 "isotherm," which is supercritical for the HCYF, has become subcriti- 
cal in the SCYF as a direct result of the increased compressibility. 

4. H I G H - D E N S I T Y  S I N G U L A R I T Y  IN (~(0) 

In common with the HCYF and other hard-core models of simple 
fluids, O) there is a high-density singularity in the inverse compressibility 
[ 0(0) 2] for the SCYF. In the case of the HCYF, this high-density singular- 
ity occurs at the unphysical value ~ -  1.0 and is independent of the 
parameters K and z in the Yukawa form for c(r). Similarly, we find that for 
the SCYF, 0 ( 0 ) ~  o0 ( f l o 0 )  at a density ~/s which is also independent of 
the parameters K and z in the assignment scheme used in this paper. 
However, ~/3 is a function of X. For 7~ = 10, 7/3 = 1.031, and this is shown 
in Fig. l a. The density ~ was found to decrease with decreasing ?~ 
(See Table I). 

For X < 6,5 the numerical procedure described in Section 2 failed at a 
density lower than the expected T/s. That is, it was not possible to find a 
value of a satisfying Eq. (20) when the solution to the quartic is fl = 0 
[ 0(0)---~ oo]. This point illustrates the need for a more appropriate scheme 
for specifying X as a function of K, ~, and 7. 
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Table I. Variation of the Density ~1~ with 7~ for Fixed 
K = 1.218 and ~ -- 2, Together with the Corresponding 

Value of a 

)" */s a 

15 1.035 0.79 
10 1.031 0.6 
7 0.975 0.52 

6.5 0.95 0.515 

5. T H E  R A D I A L  D I S T R I B U T I O N  F U N C T I O N S  

I n  Fig.  2 we have  p lo t ted  the rad ia l  d i s t r i bu t ion  f u n c t i o n  (rdf) for the 
subcr i t i ca l  va lue  of K = 1.218, )t = 10, a n d  ( = 2 at  densi t ies  cover ing  the 

whole  f lu id  range .  Th e  re levan t  va lues  of fl lie on  the b r o k e n  curve  in  Fig.  
la .  A t  *1 = 0.04 we a te  be low the g a s - l i q u i d  t r ans i t i on  dens i ty  a n d  g(r) is 

typica l  of  the gas regime,  exh ib i t ing  m o n o t o n i c  decay.  F o r  a 7 = 0.5 we have  

j u m p e d  across  the g a s - l i q u i d  coexis tence  reg ion  in to  the m e d i u m - d e n s i t y  

Fig. 2. 
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0 i i i i 

1 2 3 4 
x 

Radial distribution functions for the SCYF with parameters )t = 10, ~ = 2, and 
K = 1.218 and densities ~ = 0.04 ( ), ~ = 0.5 (- --), and ~ = 0.85 (-.-). 
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l iquid  phase.  The  osci l la t ions of a l iquid- l ike  rdf  have  a cusp at  x = 1 due  
to the m o n o t o n i c  fo rm we have  specif ied for  x < 1 in Eq. (2). A fur ther  
po in t  is tha t  for  , / =  0.85 g(r) is still physical ,  whereas  the H C Y F  g(r) at 
this dens i ty  has  b e c o m e  negative.  

6. THE PY A N D  H N C  P O T E N T I A L S  

Using  the scheme for ass igning the pa rame te r s  a ,  ~, K, and  ~ used 
above,  it  is no t  c lear  wha t  type  of po ten t ia l  the ca lcu la ted  rdf ' s  co r r e spond  
to. To ob ta in  some in fo rmat ion  on the in te rac t ion  poten t ia l  we inver ted  the 
cor re la t ion  funct ion  d a t a  [ g ( x )  and  c(x)]  to der ive PY and  H N C  poten-  

kT 

Fig. 3. 
densities • = 0.041 (PY - -  
HNC-.-). 

-1- 

I i l !i 

-2- I 

If 

x 

Inverted potentials for the SCYF with parameters h =  10, ~--2, K =  1.218 and 
-, HNC -.-), , /= 0.5 (PY - • -, HNC - �9 �9 ), and ~ = 0.69 (PY - - -, 
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tials. That is, the functions ~py(X), q~HNc(X) were calculated using the 
formulas (8,9) 

g(x)- c(x) i ~pv(X) = log (22) 

 .Nc(X) 
kT - h(x) - c(x) - log g(x)  (23) 

This procedure, known as the "inverse problem," has received considerable 
attention,(12,131 particularly in the study of liquid metals, 04) using g(x) and 
c(x) calculated from experimental structure factors. 

These potentials are shown in Fig. 3. In general the HNC potentials 
are more harshly repulsive and less attractive than the PY potentials at all 
densities, the best agreement being at low density. For ~/>~ 0.45 the PY well 
depths become very large and the potentials show a marked state depen- 
dence. When ~ >~ 0.7 they become impossible to calculate due to the rapid 
falloff in g(x) compared to c(x) in the range 1 < x ~< 1.2. By comparison 
the HNC potentials are far less state dependent. These observations are 
consistent with the known behavior of the PY and HNC theories. 

The potential minima move outward with increasing density and this is 
again consistent with the observation that the peaks in g(x), calculated 
from a density-independent potential such as the Lennard-Jones potential, 
move inward with increasing density. The former effect is a result of 
distance being scaled with respect to the position of the first peak in g(r), 
whereas the usual distance scaling is with respect to the first zero of the 
potential. 

An important feature of the intermediate- and high-density potentials 
is that the kink at x = 1 due to the cusp in g(x) at x = 1 is imperceptible. 
Thus a realistic, liquid-like potential may be obtained with the use of {he 
M = 1 term from Eq. (2), thus obviating the need to consider larger values 
of M. 

7. CONCLUSION 

The results for the SCYF model we have introduced suggest that 
further investigation is necessary, paying particular attention to establishing 
a more physical relationship between the parameters a, )~, K, and ~. The 
work presented here may be regarded as a first step towards this goal. 
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APPENDIX 

We give expressions for the matrix M and column vectors L 0, L 1 , and 
L 2 which appear in Eq. (13). Substituting the form of h(x) given in Eq. (2) 
into Eq. (4) in the range 0 < x < 1, we find that q(x) is given by Eqs. 
(6)-(8), where 

N fljew 
Q2 = 7 1 - 12,1fo'qo(t)dt - 12n 

j = I T  
(A.1) 

[~  N fljew 
~tqo(t)dt + Q1 = 12v/7 

j= 1 ~.2 
(A.2) 

[ f0 N flj~.ew ] lqo( t ) cosh ~it dt + 12~/ Q;I=A; - 1 +  12~/ - - -  (A.3) 

(A.4) 

Substitution of the form of q(x) given in Eqs. (6)-(8) into Eqs. (A.1)-(A.4) 
yields four linear equations in the parameters QI, Q2, Q;1, and Qn- This 
may then be written as a matrix equation. Unfortunately this matrix is ill 
conditioned for large )~, in that Q~l and Qn are large and opposite in sign. 
We are able to render this system well conditioned by making the substitu- 
tion 

Y = Qll, w = eX[ Qt, + Q12]/2 (A.5) 

Manipulating the linear equations in the required way, we then find that 
the equations may be written as 

02 
M Q~ 

x 
w 

= L (A.6) 
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By examining L, we can choose the terms which have fl or fld as factors 
and collect these together. Hence we find that 

L = L 0 + fiE 1 + fidE 2 (A.8) 

where 

i ] t 1 --- 12~e ~ 1/~2 
1/(~ -4- X) 

- -  e - X / ( ~  _ ~) 

e ~ --~ [ 1 -  e -~(1  + ~ ) ]  

L 2 = 12T/ ~ 1 -  T 

- 1 e - X  e t - e - X  + 

e -X e ~-x  1 - 1 +  + - 
-Y- -2- 

(A.9) 

(A.10) 

(A.11) 
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